
L:CC, MI:ERSI

CG – T4 - Representing

geometric objects in 3D

Miguel Tavares Coimbra

(course and slides designed by

Verónica Costa Orvalho)

CG Pipeline

Basic steps for creating a 2D image

out of a 3D world

CG 12/13 - T4

• Create the 3D world

– Vertexes and triangles in a 3D space

• Project it to a 2D ‘camera’

– Use perspective to transform coordinates into a

2D space

• Paint each pixel of the 2D image

– Rasterization, shading, texturing

– Will break this into smaller things later on

• Enjoy the super cool image you have created

pipeline

CG 12/13 - T4

pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU CG 12/13 - T4

pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU

. transformation

. projection

Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

process on GPU CG 12/13 - T4

pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU

. transformation

. projection

Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

process on GPU

. draws images
generated by
geometry stage

process on GPU CG 12/13 - T4

pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU

. transformation

. projection

Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

process on GPU

. draws images
generated by
geometry stage

process on GPU CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by

 ? space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in

 ? space

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in
world space

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in
world space

transform the
 view volume
into a
 unite cube

call canonical
view volume

CG 12/13 - T4

pipeline REVIEW

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

canonical view volume
orthographic projection

perspective projection

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in
world space

transform the
 view volume
into a
 unite cube

call canonical
view volume

draw primitives
that are inside
the
 ? volume

perform in HW

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in
world space

transform the
 view volume
into a
 unite cube

call canonical
view volume

draw primitives
that are inside
the
view volume

perform in HW

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in
world space

transform the
 view volume
into a
 unite cube

call canonical
view volume

draw primitives
that are inside
the
view volume

perform in HW

transform
 to
window
coord

you can
have more
than
1 viewport

CG 12/13 - T4

3D Objects

 Geometric objects are represented using vertices

 A vertex is a collection of generic attributes

 positional coordinates

 colors

 texture coordinates

 any other data associated with that point in space

 Position stored in 4 dimensional homogeneous
coordinates

 Vertex data must be stored in vertex buffer objects
(VBOs)

 VBOs must be stored in vertex array objects (VAOs)

Representing Geometric Objects

Slide by Ed Angel, Siggraph 2012

All primitives are specified by vertices

OpenGL’s Geometric Primitives

GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN

GL_LINES GL_LINE_LOOP GL_LINE_STRIP

GL_TRIANGLES

GL_POINTS

Slide by Ed Angel, Siggraph 2012

What should be a good data

structure for storing my triangles?

• Various options

– Can you describe some of them?

• An efficient one:

– Store vertexs in its own data structure

• In OpenGL: VBO – vertex buffer objects

– Store triangles (objects) in its own data

structure

• In OpenGL: VAO - vertex array objects

CG 12/13 - T4

CG 12/13 - T4
Slide by Ron Fedkiw, Stanford University

CG 12/13 - T4
Slide by Ron Fedkiw, Stanford University

CG 12/13 - T4
Slide by Ron Fedkiw, Stanford University

Example: Storing a Cube

 We’ll render a cube with colors at each

vertex

 Our example demonstrates:

 initializing vertex data

 organizing data for rendering

 simple object modeling

 building up 3D objects from geometric primitives

 building geometric primitives from vertices

Our First Program

Slide by Ed Angel, Siggraph 2012

 We’ll build each cube face from individual
triangles

 Need to determine how much storage is
required
 (6 faces)(2 triangles/face)(3 vertices/triangle)

 const int NumVertices = 36;

 To simplify communicating with GLSL, we’ll
use a vec4 class (implemented in C++) similar
to GLSL’s vec4 type
 we’ll also typedef it to add logical meaning

 typedef vec4 point4;
typedef vec4 color4;

Initializing the Cube’s Data

Slide by Ed Angel, Siggraph 2012

 Before we can initialize our VBO, we need to

stage the data

 Our cube has two attributes per vertex

 position

 color

 We create two arrays to hold the VBO data

 point4 points[NumVertices];
color4 colors[NumVertices];

Initializing the Cube’s Data (cont’d)

Slide by Ed Angel, Siggraph 2012

// Vertices of a unit cube centered at origin, sides aligned
with axes

point4 vertex_positions[8] = {

 point4(-0.5, -0.5, 0.5, 1.0),

 point4(-0.5, 0.5, 0.5, 1.0),

 point4(0.5, 0.5, 0.5, 1.0),

 point4(0.5, -0.5, 0.5, 1.0),

 point4(-0.5, -0.5, -0.5, 1.0),

 point4(-0.5, 0.5, -0.5, 1.0),

 point4(0.5, 0.5, -0.5, 1.0),

 point4(0.5, -0.5, -0.5, 1.0)

};

Cube Data

Slide by Ed Angel, Siggraph 2012

// RGBA colors

color4 vertex_colors[8] = {

 color4(0.0, 0.0, 0.0, 1.0), // black

 color4(1.0, 0.0, 0.0, 1.0), // red

 color4(1.0, 1.0, 0.0, 1.0), // yellow

 color4(0.0, 1.0, 0.0, 1.0), // green

 color4(0.0, 0.0, 1.0, 1.0), // blue

 color4(1.0, 0.0, 1.0, 1.0), // magenta

 color4(1.0, 1.0, 1.0, 1.0), // white

 color4(0.0, 1.0, 1.0, 1.0) // cyan

};

Cube Data

Slide by Ed Angel, Siggraph 2012

// quad() generates two triangles for each face and assigns colors to the

vertices

int Index = 0; // global variable indexing into VBO arrays

void quad(int a, int b, int c, int d)

{

 colors[Index] = vertex_colors[a]; points[Index] = vertex_positions[a];

Index++;

 colors[Index] = vertex_colors[b]; points[Index] = vertex_positions[b];

Index++;

 colors[Index] = vertex_colors[c]; points[Index] = vertex_positions[c];

Index++;

 colors[Index] = vertex_colors[a]; points[Index] = vertex_positions[a];

Index++;

 colors[Index] = vertex_colors[c]; points[Index] = vertex_positions[c];

Index++;

 colors[Index] = vertex_colors[d]; points[Index] = vertex_positions[d];

Index++;

}

Generating a Cube Face from Vertices

Slide by Ed Angel, Siggraph 2012

// generate 12 triangles: 36 vertices and 36
colors

void
colorcube()
{
 quad(1, 0, 3, 2);
 quad(2, 3, 7, 6);
 quad(3, 0, 4, 7);
 quad(6, 5, 1, 2);
 quad(4, 5, 6, 7);
 quad(5, 4, 0, 1);
}

Generating the Cube from Faces

Slide by Ed Angel, Siggraph 2012

What about VBOs and VAOs?

• That’s what we will explore in the lab

• In the meantime:

– Introduction to Modern OpenGL Programming

– http://www.daveshreiner.com/SIGGRAPH/s11

/

CG 12/13 - T4

http://www.daveshreiner.com/SIGGRAPH/s11/
http://www.daveshreiner.com/SIGGRAPH/s11/
http://www.daveshreiner.com/SIGGRAPH/s11/
http://www.daveshreiner.com/SIGGRAPH/s11/

