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CG Pipeline 



Basic steps for creating a 2D image 

out of a 3D world 
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• Create the 3D world 

– Vertexes and triangles in a 3D space 

• Project it to a 2D ‘camera’ 

– Use perspective to transform coordinates into a 

2D space 

• Paint each pixel of the 2D image 

– Rasterization, shading, texturing 

– Will break this into smaller things later on 

• Enjoy the super cool image you have created 

 



pipeline 
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pipeline REVIEW 
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3D Objects 



 Geometric objects are represented using vertices 

 A vertex is a collection of generic attributes 

 positional coordinates 

 colors 

 texture coordinates 

 any other data associated with that point in space 

 Position stored in 4 dimensional homogeneous 
coordinates 

 Vertex data must be stored in vertex buffer objects 
(VBOs) 

 VBOs must be stored in vertex array objects (VAOs) 

Representing Geometric Objects 

Slide by Ed Angel, Siggraph 2012 



All primitives are specified by vertices 

OpenGL’s Geometric Primitives 

GL_TRIANGLE_STRIP 
GL_TRIANGLE_FAN 

GL_LINES GL_LINE_LOOP GL_LINE_STRIP 

GL_TRIANGLES 

GL_POINTS 
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What should be a good data 

structure for storing my triangles? 

• Various options 

– Can you describe some of them? 

• An efficient one: 

– Store vertexs in its own data structure 

• In OpenGL: VBO – vertex buffer objects 

– Store triangles (objects) in its own data 

structure 

• In OpenGL: VAO - vertex array objects 
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Example: Storing a Cube 



 We’ll render a cube with colors at each 

vertex 

 Our example demonstrates: 

 initializing vertex data 

 organizing data for rendering 

 simple object modeling 

 building up 3D objects from geometric primitives 

 building geometric primitives from vertices 

Our First Program 
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 We’ll build each cube face from individual  
triangles 

 Need to determine how much storage is 
required 
 (6 faces)(2 triangles/face)(3 vertices/triangle) 

 const int NumVertices = 36; 

 To simplify communicating with GLSL, we’ll 
use a vec4 class (implemented in C++) similar 
to GLSL’s vec4 type 
 we’ll also typedef it to add logical meaning 

 typedef  vec4  point4; 
typedef  vec4  color4; 

Initializing the Cube’s Data 
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 Before we can initialize our VBO, we need to 

stage the data 

 Our cube has two attributes per vertex 

 position 

 color 

 We create two arrays to hold the VBO data 

 point4  points[NumVertices]; 
color4  colors[NumVertices]; 

Initializing the Cube’s Data (cont’d) 
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// Vertices of a unit cube centered at origin, sides aligned 
with axes 

point4 vertex_positions[8] = { 

    point4( -0.5, -0.5,  0.5, 1.0 ), 

    point4( -0.5,  0.5,  0.5, 1.0 ), 

    point4(  0.5,  0.5,  0.5, 1.0 ), 

    point4(  0.5, -0.5,  0.5, 1.0 ), 

    point4( -0.5, -0.5, -0.5, 1.0 ), 

    point4( -0.5,  0.5, -0.5, 1.0 ), 

    point4(  0.5,  0.5, -0.5, 1.0 ), 

    point4(  0.5, -0.5, -0.5, 1.0 ) 

}; 

Cube Data 
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// RGBA colors 

color4 vertex_colors[8] = { 

    color4( 0.0, 0.0, 0.0, 1.0 ),  // black 

    color4( 1.0, 0.0, 0.0, 1.0 ),  // red 

    color4( 1.0, 1.0, 0.0, 1.0 ),  // yellow 

    color4( 0.0, 1.0, 0.0, 1.0 ),  // green 

    color4( 0.0, 0.0, 1.0, 1.0 ),  // blue 

    color4( 1.0, 0.0, 1.0, 1.0 ),  // magenta 

    color4( 1.0, 1.0, 1.0, 1.0 ),  // white 

    color4( 0.0, 1.0, 1.0, 1.0 )   // cyan 

}; 

 

Cube Data 
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// quad() generates two triangles for each face and assigns colors to the 

vertices 

int Index = 0;  // global variable indexing into VBO arrays 

 

void quad( int a, int b, int c, int d ) 

{ 

    colors[Index] = vertex_colors[a]; points[Index] = vertex_positions[a]; 

Index++; 

    colors[Index] = vertex_colors[b]; points[Index] = vertex_positions[b]; 

Index++; 

    colors[Index] = vertex_colors[c]; points[Index] = vertex_positions[c]; 

Index++; 

    colors[Index] = vertex_colors[a]; points[Index] = vertex_positions[a]; 

Index++; 

    colors[Index] = vertex_colors[c]; points[Index] = vertex_positions[c]; 

Index++; 

    colors[Index] = vertex_colors[d]; points[Index] = vertex_positions[d]; 

Index++; 

} 

Generating a Cube Face from Vertices 
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// generate 12 triangles: 36 vertices and 36 
colors 

void 
colorcube() 
{ 
    quad( 1, 0, 3, 2 ); 
    quad( 2, 3, 7, 6 ); 
    quad( 3, 0, 4, 7 ); 
    quad( 6, 5, 1, 2 ); 
    quad( 4, 5, 6, 7 ); 
    quad( 5, 4, 0, 1 ); 
} 
 
 

Generating the Cube from Faces 
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What about VBOs and VAOs? 

• That’s what we will explore in the lab 

• In the meantime: 

– Introduction to Modern OpenGL Programming 

– http://www.daveshreiner.com/SIGGRAPH/s11

/ 
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