CG — T4 - Representing
geometric objects in 3D

L:CC, MI:ERSI

Miguel Tavares Coimbra

(course and slides designed by
Verdnica Costa Orvalho)

[BPORTO

CG Pipeline

[BPORTO

Basic steps for creating a 2D image
out of a 3D world

* Create the 3D world
— Vertexes and triangles in a 3D space

* Projectitto a 2D ‘camera’

— Use perspective to transform coordinates into a
2D space

» Paint each pixel of the 2D image
— Rasterization, shading, texturing
— Wil break this into smaller things later on

* Enjoy the super cool image you have created
PORTO CG 12/13- T4

pipeline

application | = | geometry

aui e N B B

PORTO CG 12/13-T4

pipeline

application | = | geometry

e e e

. collision detection

. animation global
acceleration

. physics simulation

[BAdeR POIPY seang ™

pipeline

application | = | geometry

e e e

. collision detection . transformation

. animation global . projection
acceleration

. physics simulation Computes:

. what is to be drawn
. how should be drawn
. where should be drawn

PU 6&PE)- T process on GPU

UL [REEEE0)

pipeline

. collision detection

. animation global
acceleration

. physics simulation

UL [REEEE0)

application | ==

geometry

—
B I T m

. transformation . draws images

. projection generated by
geometry stage

Computes:

. what is to be drawn

. how should be drawn

. where should be drawn

PU 6C&PE- ™ process on GPU process on GPU

pipeline

application geometry

=

. collision detection . transformation . draws images
. animation global . projection generated by
acceleration geometry stage
. physics simulation Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

@@ﬁ}?@ﬁpu &EPE- T4 process on GPU process on GPU

pipeline REVIEW

model & view
transform

vertex
shading

projection

transformation
from:
model coord.
to
world coord.

l

delinated by

? space

[BPORTO

CG 12/13-T4

furstrum
clipping

screen
mapping

pipeline REVIEW

model & view vertex S furstrum screen
—> : ~— | projection — - .. —> :
transform shading clipping mapping

transformation
from:
model coord.
to
world coord.

l

delinated by
camera space

PORTO CG 12/13- T4

pipeline REVIEW

model & view vertex S furstrum screen
—> : ~— | projection — - .. —> :
transform shading clipping mapping

transformation effect of a

from: light on a

model coord. material
to

world coord.

l l

delinated by computed in
camera space p)

space

PORTO CG 12/13- T4

pipeline REVIEW

model & view vertex S furstrum screen
—> : ~— | projection — - .. —> :
transform shading clipping mapping

transformation effect of a

from: light on a

model coord. material
to

world coord.

l l

delinated by computed in
camera space world space

PORTO CG 12/13- T4

pipeline REVIEW

model & view vertex L furstrum screen
—>)) — - projection — - . ——> :
transform shading clipping mapping
transformation effect of a transform the
from: light on a view volume
model coord. material into a
to unite cube
world coord.
delinated by computed in call canonical

camera space world space view volume

PORTO CG 12/13- T4

pipeline REVIEW

model & view
transform

vertex
shading

projection

furstrum
clipping

screen
mapping

pipeline REVIEW

furstrum
clipping

screen
mapping

model & view vertex ‘oiection
transform shading Pro]
! (Xl'Yl?.
___________ T AN —

(X3:)’3)
(XA')’4)
be, yel/
[X2,)’2) :

CG12/13-T4

draw primitives
that are inside
the

_? volume

l

perform in HW

pipeline REVIEW

furstrum
clipping

screen
mapping

model & view vertex ‘oiection
transform shading Pro]
! (Xl'Yl?.
___________ T AN —

(X3:)’3)
(XA')’4)
be, yel/
[X2,)’2) :

CG12/13-T4

draw primitives
that are inside
the

view volume

l

perform in HW

pipeline REVIEW

model & view
transform

vertex
shading

projection

furstrum
clipping

screen
mapping

transform
to

window

coord

[1024,768] [1024,768]

[560,860]

[50,260]

[0,0] 0,0]

“you can
have more
CG 12/13-T4 tha_n
1 viewport

[BPORTO

3D Objects

[BPORTO

Representing Geometric Objects

= Geometric objects are represented using vertices

= A vertex Is a collection of generic attributes
= positional coordinates

= colors
= texture coordinates o
= any other data associated with that point in space

= Position stored in 4 dimensional homogeneous

coordinates
= Vertex data must be stored in vertex buffer objects

(VBOSs)
= VBOs must be stored in vertex array objects (VAOS)

PORTO Slide by Ed Angel, Siggraph 2012

OpenGL’'s Geometric Primitives
All primitives are specified by vertices

SN % @

GL_POINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP

%
GL_TRIANGLES w GL_TRIANGLE_FAN

GL_TRIANGLE_STRIP
PORTO Slide by Ed Angel, Siggraph 2012

What should be a good data
structure for storing my triangles?

 Various options
— Can you describe some of them?

 An efficient one:

— Store vertexs in its own data structure
* In OpenGL: VBO - vertex buffer objects

— Store triangles (objects) in its own data
structure

 In OpenGL: VAO - vertex array objects

PORTO CG 12/13- T4

Data Structure: Separate Triangles

Treat each triangle separately with its own vertices

f.vo v r.v

typedef float Point[3];

struct Face {
Point v[3];
}s

mesh = Face[nFaces];

f.vi f.vo2
Storage: 72 bytes per vertex

No notion of “neighbor triangles”: Individual triangles
might not overlap with their vertices or edges

PORTO CG12/13-T4 Slide by Ron Fedkiw, Stanford University

Data Structure: Indexed Triangle Set

Store each vertex only once; each face contains indices to its
three vertices

typedef float Point[3];
struct Face {

int vIndex[3];

}s
mesh.verts=Point[nverts];

mesh.faces=Face[nFaces];

Storage: 12 (verts) + 24 (faces) = 36 bytes per vertex
(approximate using #f = 2 #v)

By removing vertex redundancy we have a notion of neighbor,
however finding any neighbor requires a global search

PORTO CG12/13-T4 Slide by Ron Fedkiw, Stanford University

Comparison

Separate Triangles (Vertex Buffer only)
+ Simple
— Redundant information

Indexed Triangle Set (Vertex Buffer + Index Buffer)
+ Sharing vertices reduces memory usage

+ Ensure integrity of the mesh (moving a vertex causes that
vertex in all the polygons to be moved)

+ Both formats are compact and directly accepted by GPUs
+ Both can represent non-manifold meshes
— Neither is good at neighborhood access/modification

PORTO CG12/13-T4 Slide by Ron Fedkiw, Stanford University

Example: Storing a Cube

[BPORTO

Our First Program

= \We'll render a cube with colors at each
vertex

= Our example demonstrates:
= |nitializing vertex data
= organizing data for rendering

* simple object modeling
= building up 3D objects from geometric primitives
* building geometric primitives from vertices

PORTO Slide by Ed Angel, Siggraph 2012

Initializing the Cube’s Data

= \We'll build each cube face from individual
triangles

* Need to determine how much storage is
required
= (6 faces)(2 triangles/face)(3 vertices/triangle)
const int NumVertices = 36;
= To simplify communicating with GLSL, we’'ll
use a vec4 class (implemented in C++) similar
to GLSL’s vec4 type
= we'll also typedef it to add logical meaning

typedeft vecd4 point4;
typedeft vecd4 color4;

PORTO Slide by Ed Angel, Siggraph 2012

Initializing the Cube’s Data (cont’d)

= Before we can Initialize our VBO, we need to
stage the data
= Our cube has two attributes per vertex
= position
= color
= \We create two arrays to hold the VBO data

point4 points[NumVertices];
color4d colors[NumVertices];

PORTO Slide by Ed Angel, Siggraph 2012

Cube Data

// Vertices of a unit cube centered at origin, sides aligned
with axes

point4 vertex positions[8] = {

point4(-0.5, -0.5, 0.5, 1.0),
point4(-0.5, 0.5, 0.5, 1.0),
point4(0.5, 0.5, 0.5, 1.9),
point4(©.5, -0.5, 0.5, 1.0),
point4(-0.5, -0.5, -0.5, 1.9),
point4(-0.5, 0.5, -0.5, 1.9),
point4(0.5, 0.5, -0.5, 1.0),
point4(0.5, -0.5, -0.5, 1.0)

}s

PORTO Slide by Ed Angel, Siggraph 2012

Cube Data

// RGBA colors
color4 vertex colors[8] = {

color4(0.0, 0.0, 0.0, 1.0), // black
color4(1.0, 0.0, 0.0, 1.0), // red
color4(1.0, 1.0, 0.0, 1.0), // yellow
color4(0.0, 1.0, 0.0, 1.0), // green
color4(0.0, 0.0, 1.0, 1.0), // blue
color4(1.0, 0.0, 1.0, 1.0), // magenta
color4(1.0, 1.0, 1.0, 1.0), // white
color4(0.0, 1.0, 1.0, 1.0) // cyan

s

PORTO Slide by Ed Angel, Siggraph 2012

Generating a Cube Face from Vertices

// quad() generates two triangles for each face and assigns colors to the

vertices

int Index = 0; // global variable indexing into VBO arrays

void quad(int a,

{

colors[Index]
Index++;

colors[Index]
Index++;

colors[Index]
Index++;

colors[Index]
Index++;

colors|[Index]
Index++;

colors[Index]
Index++;

int b, int ¢, int 4)

[BPORTO

vertex colors|a];
vertex colors[b];
vertex colors|c];
vertex colors|a];
vertex colors|c];

vertex colors([d];

points|[Index]
points[Index]
points|[Index]
points[Index]
points|[Index]

points[Index]

vertex positionsl[a];
vertex positions[b];
vertex positions|c];
vertex positions[a];
vertex positions|c];

vertex positions[d];

Slide by Ed Angel, Siggraph 2012

Generating the Cube from Faces

// generate 12 triangles: 36 vertices and 36

colors

void

colorcube()

{
quad(1, @, 3, 2);
quad(2, 3, 7, 6);
quad(3, @, 4, 7);
quad(6, 5, 1, 2);
quad(4, 5, 6, 7);
quad(5, 4, 0, 1);

}

PORTO Slide by Ed Angel, Siggraph 2012

What about VBOs and VAOsS?

* That's what we will explore in the lab

* |n the meantime:

— Introduction to Modern OpenGL Programming

— http://www.daveshreiner.com/SIGGRAPH/s11
/

PORTO CG 12/13- T4

http://www.daveshreiner.com/SIGGRAPH/s11/
http://www.daveshreiner.com/SIGGRAPH/s11/
http://www.daveshreiner.com/SIGGRAPH/s11/
http://www.daveshreiner.com/SIGGRAPH/s11/

