
L:CC, MI:ERSI

CG – T4 - Representing

geometric objects in 3D

Miguel Tavares Coimbra

(course and slides designed by

Verónica Costa Orvalho)

CG Pipeline

Basic steps for creating a 2D image

out of a 3D world

CG 12/13 - T4

• Create the 3D world

– Vertexes and triangles in a 3D space

• Project it to a 2D ‘camera’

– Use perspective to transform coordinates into a

2D space

• Paint each pixel of the 2D image

– Rasterization, shading, texturing

– Will break this into smaller things later on

• Enjoy the super cool image you have created

pipeline

CG 12/13 - T4

pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU CG 12/13 - T4

pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU

. transformation

. projection

Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

process on GPU CG 12/13 - T4

pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU

. transformation

. projection

Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

process on GPU

. draws images
generated by
geometry stage

process on GPU CG 12/13 - T4

pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU

. transformation

. projection

Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

process on GPU

. draws images
generated by
geometry stage

process on GPU CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by

 ? space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in

 ? space

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in
world space

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in
world space

transform the
 view volume
into a
 unite cube

call canonical
view volume

CG 12/13 - T4

pipeline REVIEW

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

canonical view volume
orthographic projection

perspective projection

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in
world space

transform the
 view volume
into a
 unite cube

call canonical
view volume

draw primitives
that are inside
the
 ? volume

perform in HW

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in
world space

transform the
 view volume
into a
 unite cube

call canonical
view volume

draw primitives
that are inside
the
view volume

perform in HW

CG 12/13 - T4

pipeline REVIEW

transformation
from:
model coord.
 to
world coord.

delinated by
camera space

model & view
transform

vertex
shading

projection
furstrum
clipping

screen
mapping

effect of a
light on a
material

computed in
world space

transform the
 view volume
into a
 unite cube

call canonical
view volume

draw primitives
that are inside
the
view volume

perform in HW

transform
 to
window
coord

you can
have more
than
1 viewport

CG 12/13 - T4

3D Objects

 Geometric objects are represented using vertices

 A vertex is a collection of generic attributes

 positional coordinates

 colors

 texture coordinates

 any other data associated with that point in space

 Position stored in 4 dimensional homogeneous
coordinates

 Vertex data must be stored in vertex buffer objects
(VBOs)

 VBOs must be stored in vertex array objects (VAOs)

Representing Geometric Objects

Slide by Ed Angel, Siggraph 2012

All primitives are specified by vertices

OpenGL’s Geometric Primitives

GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN

GL_LINES GL_LINE_LOOP GL_LINE_STRIP

GL_TRIANGLES

GL_POINTS

Slide by Ed Angel, Siggraph 2012

What should be a good data

structure for storing my triangles?

• Various options

– Can you describe some of them?

• An efficient one:

– Store vertexs in its own data structure

• In OpenGL: VBO – vertex buffer objects

– Store triangles (objects) in its own data

structure

• In OpenGL: VAO - vertex array objects

CG 12/13 - T4

CG 12/13 - T4
Slide by Ron Fedkiw, Stanford University

CG 12/13 - T4
Slide by Ron Fedkiw, Stanford University

CG 12/13 - T4
Slide by Ron Fedkiw, Stanford University

Example: Storing a Cube

 We’ll render a cube with colors at each

vertex

 Our example demonstrates:

 initializing vertex data

 organizing data for rendering

 simple object modeling

 building up 3D objects from geometric primitives

 building geometric primitives from vertices

Our First Program

Slide by Ed Angel, Siggraph 2012

 We’ll build each cube face from individual
triangles

 Need to determine how much storage is
required
 (6 faces)(2 triangles/face)(3 vertices/triangle)

 const int NumVertices = 36;

 To simplify communicating with GLSL, we’ll
use a vec4 class (implemented in C++) similar
to GLSL’s vec4 type
 we’ll also typedef it to add logical meaning

 typedef vec4 point4;
typedef vec4 color4;

Initializing the Cube’s Data

Slide by Ed Angel, Siggraph 2012

 Before we can initialize our VBO, we need to

stage the data

 Our cube has two attributes per vertex

 position

 color

 We create two arrays to hold the VBO data

 point4 points[NumVertices];
color4 colors[NumVertices];

Initializing the Cube’s Data (cont’d)

Slide by Ed Angel, Siggraph 2012

// Vertices of a unit cube centered at origin, sides aligned
with axes

point4 vertex_positions[8] = {

 point4(-0.5, -0.5, 0.5, 1.0),

 point4(-0.5, 0.5, 0.5, 1.0),

 point4(0.5, 0.5, 0.5, 1.0),

 point4(0.5, -0.5, 0.5, 1.0),

 point4(-0.5, -0.5, -0.5, 1.0),

 point4(-0.5, 0.5, -0.5, 1.0),

 point4(0.5, 0.5, -0.5, 1.0),

 point4(0.5, -0.5, -0.5, 1.0)

};

Cube Data

Slide by Ed Angel, Siggraph 2012

// RGBA colors

color4 vertex_colors[8] = {

 color4(0.0, 0.0, 0.0, 1.0), // black

 color4(1.0, 0.0, 0.0, 1.0), // red

 color4(1.0, 1.0, 0.0, 1.0), // yellow

 color4(0.0, 1.0, 0.0, 1.0), // green

 color4(0.0, 0.0, 1.0, 1.0), // blue

 color4(1.0, 0.0, 1.0, 1.0), // magenta

 color4(1.0, 1.0, 1.0, 1.0), // white

 color4(0.0, 1.0, 1.0, 1.0) // cyan

};

Cube Data

Slide by Ed Angel, Siggraph 2012

// quad() generates two triangles for each face and assigns colors to the

vertices

int Index = 0; // global variable indexing into VBO arrays

void quad(int a, int b, int c, int d)

{

 colors[Index] = vertex_colors[a]; points[Index] = vertex_positions[a];

Index++;

 colors[Index] = vertex_colors[b]; points[Index] = vertex_positions[b];

Index++;

 colors[Index] = vertex_colors[c]; points[Index] = vertex_positions[c];

Index++;

 colors[Index] = vertex_colors[a]; points[Index] = vertex_positions[a];

Index++;

 colors[Index] = vertex_colors[c]; points[Index] = vertex_positions[c];

Index++;

 colors[Index] = vertex_colors[d]; points[Index] = vertex_positions[d];

Index++;

}

Generating a Cube Face from Vertices

Slide by Ed Angel, Siggraph 2012

// generate 12 triangles: 36 vertices and 36
colors

void
colorcube()
{
 quad(1, 0, 3, 2);
 quad(2, 3, 7, 6);
 quad(3, 0, 4, 7);
 quad(6, 5, 1, 2);
 quad(4, 5, 6, 7);
 quad(5, 4, 0, 1);
}

Generating the Cube from Faces

Slide by Ed Angel, Siggraph 2012

What about VBOs and VAOs?

• That’s what we will explore in the lab

• In the meantime:

– Introduction to Modern OpenGL Programming

– http://www.daveshreiner.com/SIGGRAPH/s11

/

CG 12/13 - T4

http://www.daveshreiner.com/SIGGRAPH/s11/
http://www.daveshreiner.com/SIGGRAPH/s11/
http://www.daveshreiner.com/SIGGRAPH/s11/
http://www.daveshreiner.com/SIGGRAPH/s11/

